Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 10(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38625724

RESUMO

Streptomyces are prolific producers of secondary metabolites from which many clinically useful compounds have been derived. They inhabit diverse habitats but have rarely been reported in vertebrates. Here, we aim to determine to what extent the ecological source (bat host species and cave sites) influence the genomic and biosynthetic diversity of Streptomyces bacteria. We analysed draft genomes of 132 Streptomyces isolates sampled from 11 species of insectivorous bats from six cave sites in Arizona and New Mexico, USA. We delineated 55 species based on the genome-wide average nucleotide identity and core genome phylogenetic tree. Streptomyces isolates that colonize the same bat species or inhabit the same site exhibit greater overall genomic similarity than they do with Streptomyces from other bat species or sites. However, when considering biosynthetic gene clusters (BGCs) alone, BGC distribution is not structured by the ecological or geographical source of the Streptomyces that carry them. Each genome carried between 19-65 BGCs (median=42.5) and varied even among members of the same Streptomyces species. Nine major classes of BGCs were detected in ten of the 11 bat species and in all sites: terpene, non-ribosomal peptide synthetase, polyketide synthase, siderophore, RiPP-like, butyrolactone, lanthipeptide, ectoine, melanin. Finally, Streptomyces genomes carry multiple hybrid BGCs consisting of signature domains from two to seven distinct BGC classes. Taken together, our results bring critical insights to understanding Streptomyces-bat ecology and BGC diversity that may contribute to bat health and in augmenting current efforts in natural product discovery, especially from underexplored or overlooked environments.


Assuntos
Quirópteros , Animais , Filogenia , Genômica , Arizona , Bactérias
2.
Int J Hyg Environ Health ; 258: 114347, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492327

RESUMO

The role of recreational water use in the acquisition and transmission of antimicrobial resistance (AMR) is under-explored in low- and middle-income countries (LMICs). We used whole genome sequence analysis to provide insights into the resistomes, mobilomes and virulomes of 14 beta-lactams resistant Enterobacterales isolated from water and wet-sand at four recreational beaches in Lagos, Nigeria. Carriage of multiple beta-lactamase genes was detected in all isolates except two, including six isolates carrying blaNDM-1. Most detected antibiotic resistance genes (ARGs) were located within a diverse landscape of plasmids, insertion sequences and transposons including the presence of ISKpn14 upstream of blaNDM-1 in a first report in Africa. Virulence genes involved in adhesion and motility as well as secretion systems are particularly abundant in the genomes of the isolates. Our results confirmed the four beaches are contaminated with bacteria carrying clinically relevant ARGs associated with mobile genetic elements (MGE) which could promote the transmission of ARGs at the recreational water-human interface.


Assuntos
Enterobacteriaceae , beta-Lactamas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Nigéria , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Água
3.
mSphere ; 9(4): e0075123, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38501935

RESUMO

Staphylococcus aureus is a ubiquitous commensal and opportunistic bacterial pathogen that can cause a wide gamut of infections, which are exacerbated by the presence of multidrug-resistant and methicillin-resistant S. aureus. S. aureus is genetically heterogeneous and consists of numerous distinct lineages. Using 558 complete genomes of S. aureus, we aim to determine how the accessory genome content among phylogenetic lineages of S. aureus is structured and has evolved. Bayesian hierarchical clustering identified 10 sequence clusters, of which seven contained major sequence types (ST 1, 5, 8, 30, 59, 239, and 398). The seven sequence clusters differed in their accessory gene content, including genes associated with antimicrobial resistance and virulence. Focusing on the two largest clusters, BAPS8 and BAPS10, and each consisting mostly of ST5 and ST8, respectively, we found that the structure and connected components in the co-occurrence networks of accessory genomes varied between them. These differences are explained, in part, by the variation in the rates at which the two sequence clusters gained and lost accessory genes, with the highest rate of gene accumulation occurring recently in their evolutionary histories. We also identified a divergent group within BAPS10 that has experienced high gene gain and loss early in its history. Together, our results show highly variable and dynamic accessory genomes in S. aureus that are structured by the history of the specific lineages that carry them.IMPORTANCEStaphylococcus aureus is an opportunistic, multi-host pathogen that can cause a variety of benign and life-threatening infections. Our results revealed considerable differences in the structure and evolution of the accessory genomes of major lineages within S. aureus. Such genomic variation within a species can have important implications on disease epidemiology, pathogenesis of infection, and interactions with the vertebrate host. Our findings provide important insights into the underlying genetic basis for the success of S. aureus as a highly adaptable and resistant pathogen, which will inform current efforts to control and treat staphylococcal diseases.

4.
Lancet Glob Health ; 12(4): e599-e610, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485427

RESUMO

BACKGROUND: Typhoid Fever remains a major cause of morbidity and mortality in low-income settings. The Severe Typhoid in Africa programme was designed to address regional gaps in typhoid burden data and identify populations eligible for interventions using novel typhoid conjugate vaccines. METHODS: A hybrid design, hospital-based prospective surveillance with population-based health-care utilisation surveys, was implemented in six countries in sub-Saharan Africa. Patients presenting with fever (≥37·5°C axillary or ≥38·0°C tympanic) or reporting fever for three consecutive days within the previous 7 days were invited to participate. Typhoid fever was ascertained by culture of blood collected upon enrolment. Disease incidence at the population level was estimated using a Bayesian mixture model. FINDINGS: 27 866 (33·8%) of 82 491 participants who met inclusion criteria were recruited. Blood cultures were performed for 27 544 (98·8%) of enrolled participants. Clinically significant organisms were detected in 2136 (7·7%) of these cultures, and 346 (16·2%) Salmonella enterica serovar Typhi were isolated. The overall adjusted incidence per 100 000 person-years of observation was highest in Kavuaya and Nkandu 1, Democratic Republic of the Congo (315, 95% credible interval 254-390). Overall, 46 (16·4%) of 280 tested isolates showed ciprofloxacin non-susceptibility. INTERPRETATION: High disease incidence (ie, >100 per 100 000 person-years of observation) recorded in four countries, the prevalence of typhoid hospitalisations and complicated disease, and the threat of resistant typhoid strains strengthen the need for rapid dispatch and implementation of effective typhoid conjugate vaccines along with measures designed to improve clean water, sanitation, and hygiene practices. FUNDING: The Bill & Melinda Gates Foundation.


Assuntos
Febre Tifoide , Vacinas , Humanos , Febre Tifoide/epidemiologia , Febre Tifoide/prevenção & controle , Gana , Madagáscar , Burkina Faso/epidemiologia , Etiópia , Incidência , Nigéria , Estudos Prospectivos , Teorema de Bayes , República Democrática do Congo
5.
Elife ; 122023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37697804

RESUMO

Background: The Global Typhoid Genomics Consortium was established to bring together the typhoid research community to aggregate and analyse Salmonella enterica serovar Typhi (Typhi) genomic data to inform public health action. This analysis, which marks 22 years since the publication of the first Typhi genome, represents the largest Typhi genome sequence collection to date (n=13,000). Methods: This is a meta-analysis of global genotype and antimicrobial resistance (AMR) determinants extracted from previously sequenced genome data and analysed using consistent methods implemented in open analysis platforms GenoTyphi and Pathogenwatch. Results: Compared with previous global snapshots, the data highlight that genotype 4.3.1 (H58) has not spread beyond Asia and Eastern/Southern Africa; in other regions, distinct genotypes dominate and have independently evolved AMR. Data gaps remain in many parts of the world, and we show the potential of travel-associated sequences to provide informal 'sentinel' surveillance for such locations. The data indicate that ciprofloxacin non-susceptibility (>1 resistance determinant) is widespread across geographies and genotypes, with high-level ciprofloxacin resistance (≥3 determinants) reaching 20% prevalence in South Asia. Extensively drug-resistant (XDR) typhoid has become dominant in Pakistan (70% in 2020) but has not yet become established elsewhere. Ceftriaxone resistance has emerged in eight non-XDR genotypes, including a ciprofloxacin-resistant lineage (4.3.1.2.1) in India. Azithromycin resistance mutations were detected at low prevalence in South Asia, including in two common ciprofloxacin-resistant genotypes. Conclusions: The consortium's aim is to encourage continued data sharing and collaboration to monitor the emergence and global spread of AMR Typhi, and to inform decision-making around the introduction of typhoid conjugate vaccines (TCVs) and other prevention and control strategies. Funding: No specific funding was awarded for this meta-analysis. Coordinators were supported by fellowships from the European Union (ZAD received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 845681), the Wellcome Trust (SB, Wellcome Trust Senior Fellowship), and the National Health and Medical Research Council (DJI is supported by an NHMRC Investigator Grant [GNT1195210]).


Salmonella Typhi (Typhi) is a type of bacteria that causes typhoid fever. More than 110,000 people die from this disease each year, predominantly in areas of sub-Saharan Africa and South Asia with limited access to safe water and sanitation. Clinicians use antibiotics to treat typhoid fever, but scientists worry that the spread of antimicrobial-resistant Typhi could render the drugs ineffective, leading to increased typhoid fever mortality. The World Health Organization has prequalified two vaccines that are highly effective in preventing typhoid fever and may also help limit the emergence and spread of resistant Typhi. In low resource settings, public health officials must make difficult trade-off decisions about which new vaccines to introduce into already crowded immunization schedules. Understanding the local burden of antimicrobial-resistant Typhi and how it is spreading could help inform their actions. The Global Typhoid Genomics Consortium analyzed 13,000 Typhi genomes from 110 countries to provide a global overview of genetic diversity and antimicrobial-resistant patterns. The analysis showed great genetic diversity of the different strains between countries and regions. For example, the H58 Typhi variant, which is often drug-resistant, has spread rapidly through Asia and Eastern and Southern Africa, but is less common in other regions. However, distinct strains of other drug-resistant Typhi have emerged in other parts of the world. Resistance to the antibiotic ciprofloxacin was widespread and accounted for over 85% of cases in South Africa. Around 70% of Typhi from Pakistan were extensively drug-resistant in 2020, but these hard-to-treat variants have not yet become established elsewhere. Variants that are resistant to both ciprofloxacin and ceftriaxone have been identified, and azithromycin resistance has also appeared in several different variants across South Asia. The Consortium's analyses provide valuable insights into the global distribution and transmission patterns of drug-resistant Typhi. Limited genetic data were available fromseveral regions, but data from travel-associated cases helped fill some regional gaps. These findings may help serve as a starting point for collective sharing and analyses of genetic data to inform local public health action. Funders need to provide ongoing supportto help fill global surveillance data gaps.


Assuntos
Salmonella typhi , Febre Tifoide , Humanos , Salmonella typhi/genética , Febre Tifoide/epidemiologia , Antibacterianos/farmacologia , Viagem , Farmacorresistência Bacteriana/genética , Ciprofloxacina
6.
Microbiol Spectr ; : e0054923, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676032

RESUMO

Klebsiella oxytoca is an opportunistic pathogen causing serious nosocomial infections. Knowledge about the population structure and diversity of healthcare-associated K. oxytoca from a genomic standpoint remains limited. Here, we characterized the phylogenetic relationships and genomic characteristics of 20 K. oxytoca sensu stricto isolates recovered from bloodstream infections at the Dartmouth-Hitchcock Medical Center, New Hampshire, USA from 2017 to 2021. Results revealed a diverse population consisting of 15 sequence types (STs) that together harbored 10 variants of the intrinsic beta-lactamase gene bla OXY-2, conferring resistance to penicillins. Similar sets of antimicrobial resistance (AMR) determinants reside in multiple distinct lineages, with no one lineage dominating the local population. To place the New Hampshire K. oxytoca in a broader context, we compared them to 304 publicly available genomes of clinical isolates from 18 countries. This global clinical K. oxytoca sensu stricto population is represented by over 65 STs that together harbored resistance genes against 14 antimicrobial classes, including eight bla OXY-2 variants. Three dominant STs in the global population (ST2, ST176, ST199) circulate across multiple countries and were also present in the New Hampshire population. The global K. oxytoca population is genetically diverse, but there is evidence for broad dissemination of a few lineages carrying distinct set of AMR determinants. Our findings reveal the clinical diversity of K. oxytoca sensu stricto and its importance in surveillance efforts aimed at monitoring the evolution of this drug-resistant nosocomial pathogen. IMPORTANCE The opportunistic pathogen Klebsiella oxytoca has been increasingly implicated in patient morbidity and mortality worldwide, including several outbreaks in healthcare settings. The emergence and spread of antimicrobial resistant strains exacerbate the disease burden caused by this species. Our study showed that clinical K. oxytoca sensu stricto is phylogenetically diverse, harboring various antimicrobial resistance determinants and bla OXY-2 variants. Understanding the genomic and population structure of K. oxytoca is important for international initiatives and local epidemiological efforts for surveillance and control of drug-resistant K. oxytoca.

7.
Commun Biol ; 6(1): 482, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137974

RESUMO

Coagulase-negative Staphylococcus (CoNS) are opportunistic pathogens implicated in many human and animal infections. The evolutionary history of CoNS remains obscure because of the historical lack of recognition for their clinical importance and poor taxonomic sampling. Here, we sequenced the genomes of 191 CoNS isolates representing 15 species sampled from diseased animals diagnosed in a veterinary diagnostic laboratory. We found that CoNS are important reservoirs of diverse phages, plasmids and mobilizable genes encoding antimicrobial resistance, heavy metal resistance, and virulence. Frequent exchange of DNA between certain donor-recipient partners suggests that specific lineages act as hubs of gene sharing. We also detected frequent recombination between CoNS regardless of their animal host species, indicating that ecological barriers to horizontal gene transfer can be surmounted in co-circulating lineages. Our findings reveal frequent but structured patterns of transfer that exist within and between CoNS species, which are driven by their overlapping ecology and geographical proximity.


Assuntos
Bacteriófagos , Coagulase , Animais , Humanos , Coagulase/genética , Staphylococcus/genética , Plasmídeos
8.
Environ Sci Pollut Res Int ; 30(16): 47158-47167, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36735119

RESUMO

Untreated wastewater emanating from healthcare facilities are risk factors for the spread of antimicrobial resistance (AMR) at the human-environment interface. In this study, we investigated the determinants of resistance in three multidrug resistant strains of Proteus mirabilis isolated from untreated wastewater collected from three government owned hospitals in Ibadan, Nigeria. Despite showing low-level resistance to ciprofloxacin, whole genome sequencing revealed the transferable mechanism of quinolone resistance (TMQR) gene qnrD3 carried on Col3M plasmids in all the isolates. Core genome phylogenetic analysis showed the isolates are closely related differing from each other by ≤ 23 single nucleotide polymorphisms (SNP). Further, they shared the closest evolutionary relationship with isolates from China. Similarly, the Col3M plasmids is most closely related to p3M-2A found in P. vulgaris 3 M isolated from the intestine of shrimps in China. This to the best of our knowledge is the first report of Col3M plasmids carrying qnrD3 in environmental bacterial isolates. Our results indicate a possible silent spread of this important plasmid associated with the dissemination of qnrD3 in Nigeria, and further highlights the important role played by untreated wastewater from healthcare facilities in the spread of AMR in low- and middle-income countries.


Assuntos
Fluoroquinolonas , Proteus mirabilis , Humanos , Proteus mirabilis/genética , Fluoroquinolonas/farmacologia , Antibacterianos/farmacologia , Águas Residuárias , Nigéria , Filogenia , Farmacorresistência Bacteriana Múltipla , Plasmídeos , Hospitais , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
9.
One Health ; 16: 100489, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36683959

RESUMO

Antimicrobial resistance remains a threat to global public health. Low-and middle-income countries carry a greater burden of resistance because of higher rates of infection as well as, potentially, location-specific risk factors. Food animals occupy a critical crossover point for the spread of antimicrobial resistance to humans and the environment. However, this domain remains poorly surveilled outside high-income settings. We used point surveillance from 191 studies reporting phenotypic AMR in food animals across 38 African, Middle Eastern, Asian and South and Central American countries to depict antimicrobial resistance trend in food animals. By computing Multiple Antibiotic Resistance indices and finding an overall mean of 0.34 ± 0.16, which is above the 0.2 index associated with multidrug resistance and high risk, we show that multidrug resistance in bacteria from food animal sources is worryingly high. MAR indexes from food animals were overall higher than those previously computed from aquaculture but, unlike aquaculture-computed MAR indices, did not track closely with those of human-associated bacteria in the same countries. Food animals are an important reservoir for rising antimicrobial resistance in bacteria, and hence improved surveillance in this sector is highly recommended.

10.
Microbiol Resour Announc ; 11(10): e0071422, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36125295

RESUMO

Mammaliicoccus sciuri (previously Staphylococcus sciuri) is a frequent colonizer of mammals. We report the draft genomes of a methicillin-resistant strain (2254A) isolated from an armadillo and a methicillin-susceptible strain (6942A) from a cow. Genomes were sequenced using long-read Nanopore sequencing.

11.
Microbiology (Reading) ; 168(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35980376

RESUMO

Whole-genome sequencing (WGS) is finding important applications in the surveillance of antimicrobial resistance (AMR), providing the most granular data and broadening the scope of niches and locations that can be surveilled. A common but often overlooked application of WGS is to replace or augment reference laboratory services for AMR surveillance. WGS has supplanted traditional strain subtyping in many comprehensive reference laboratories and is now the gold standard for rapidly ruling isolates into or out of suspected outbreak clusters. These and other properties give WGS the potential to serve in AMR reference functioning where a reference laboratory did not hitherto exist. In this perspective, we describe how we have employed a WGS approach, and an academic-public health system collaboration, to provide AMR reference laboratory services in Nigeria, as a model for leapfrogging to national AMR surveillance.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Surtos de Doenças , Farmacorresistência Bacteriana/genética , Nigéria , Sequenciamento Completo do Genoma
12.
PLoS Negl Trop Dis ; 16(8): e0010716, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36026470

RESUMO

BACKGROUND: Salmonellosis causes significant morbidity and mortality in Africa. Information on lineages of invasive Salmonella circulating in Nigeria is sparse. METHODS: Salmonella enterica isolated from blood (n = 60) and cerebrospinal fluid (CSF, n = 3) between 2016 and 2020 from five tertiary hospitals in southwest Nigeria were antimicrobial susceptibility-tested and Illumina-sequenced. Genomes were analysed using publicly-available bioinformatic tools. RESULTS: Isolates and sequence types (STs) from blood were S. Typhi [ST1, n = 1 and ST2, n = 43] and invasive non-typhoidal Salmonella (iNTS) (S. Enteritidis [ST11, n = 7], S. Durham [ST10, n = 2], S. Rissen [ST8756, n = 2], S. Chester [ST2063, n = 1], S. Dublin [ST10, n = 1], S. Infantis [ST603, n = 1], S. Telelkebir [ST8757, n = 1] and S. Typhimurium [ST313, n = 1]). S. Typhi ST2 (n = 2) and S. Adabraka ST8757 (n = 1) were recovered from CSF. Most S. Typhi belonged to genotype 3.1.1 (n = 44), carried an IncY plasmid, had several antibiotic resistance genes (ARGs) including blaTEM-1 (n = 38), aph(6)-Id (n = 32), tet(A) (n = 33), sul2 (n = 32), dfrA14 (n = 30) as well as quinolone resistance-conferring gyrA_S83Y single-nucleotide polymorphisms (n = 37). All S. Enteritidis harboured aph(3")-Ib, blaTEM-1, catA1, dfrA7, sul1, sul2, tet(B) genes, and a single ARG, qnrB19, was detected in S. Telelkebir. Typhoidal toxins cdtB, pltA and pltB were detected in S. Typhi, Rissen, Chester, and Telelkebir. CONCLUSION: Most invasive salmonelloses in southwest Nigeria are vaccine-preventable infections due to multidrug-resistant, West African dominant S. Typhi lineage 3.1.1. Invasive NTS serovars, including some harbouring typhoidal toxin or resistance genes, represented a third of the isolates emphasizing the need for better diagnosis and surveillance.


Assuntos
Infecções por Salmonella , Febre Tifoide , Vacinas Tíficas-Paratíficas , Antibacterianos/farmacologia , Genômica , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Testes de Sensibilidade Microbiana , Nigéria/epidemiologia , Infecções por Salmonella/epidemiologia , Salmonella enteritidis/genética , Febre Tifoide/epidemiologia
13.
Microbiol Resour Announc ; 11(8): e0031422, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35862915

RESUMO

Draft genomes of multidrug-resistant Shiga toxin-producing Escherichia coli (STEC) strains IPK9(1) and IKS1(2), which were isolated from ready-to-eat foods (kokoro and shawarma) sold in Lagos, Nigeria, are reported. The genomes possessed genetic determinants for virulence and the antibiotic resistance gene for macrolide-associated resistance mdf(A). Ready-to-eat foods increase public health threats in Nigeria.

14.
Nat Microbiol ; 7(6): 757-765, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35637328

RESUMO

Antimicrobial resistance (AMR) is tracked most closely in clinical settings and high-income countries. However, resistant organisms thrive globally and are transmitted to and from healthy humans, animals and the environment, particularly in many low- and middle-income settings. The overall public health and clinical significance of these transmission opportunities remain to be completely clarified. There is thus considerable global interest in promoting a One Health view of AMR to enable a more realistic understanding of its ecology. In reality, AMR surveillance outside hospitals remains insufficient and it has been very challenging to convincingly document transmission at the interfaces between clinical specimens and other niches. In this Review, we describe AMR and its transmission in low- and middle-income-country settings, emphasizing high-risk transmission points such as urban settings and food-animal handling. In urban and food production settings, top-down and infrastructure-dependent interventions against AMR that require strong regulatory oversight are less likely to curtail transmission when used alone and should be combined with bottom-up AMR-containment approaches. We observe that the power of genomics to expose transmission channels and hotspots is largely unharnessed, and that existing and upcoming technological innovations need to be exploited towards containing AMR in low- and middle-income settings.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Animais , Antibacterianos/farmacologia , Países em Desenvolvimento , Saúde Pública
15.
Sci Rep ; 10(1): 7097, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32341417

RESUMO

The silver butter catfish (Schilbe intermedius) is widely distributed across African river systems. To date, information on its mitochondrial genetic diversity, population structure, and historical demography are not well-established. Herein, we combined newly generated mitochondrial cytochrome c oxidase (COI) subunit I gene sequences with previously published COI sequences in the global databases to reconstruct its phylogeography, population genetic structure, and historical demography. Results from the mtDNA phylogeography and species delimitation tests (Cluster algorithm - Species Identifier, Automatic Barcode Gap Discovery and Poison Tree Process model) revealed that S. intermedius comprises at least seven geographically defined matrilines. Although the overall haplotype diversity of S. intermedius was high (h = 0.90), results showed that East (Kenya) and West (Nigeria) African populations had low levels of haplotype diversity (h = ~0.40). In addition, population genetic polymorphism and historical demographics showed that S. intermedius populations in both East and West Africa underwent severe contractions as a result of biogeographic influences. The patterns of genetic diversity and population structure were consistent with adaptive responses to historical biogeographic factors and contemporary environmental variations across African river systems. This is suggestive of the influence of historical biogeographic factors and climatic conditions on population divergence of S. intermedius across African river systems. Given our discovery of previously underappreciated diversity within S. intermedius, we recommend that this species be considered for increased conservation and management.


Assuntos
Peixes-Gato/genética , Código de Barras de DNA Taxonômico , DNA Mitocondrial/genética , Variação Genética , Filogenia , Animais , Quênia , Nigéria , Filogeografia , Rios
16.
Curr Zool ; 65(6): 713-724, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31857818

RESUMO

Nigeria is an Afrotropical region with considerable ecological heterogeneity and levels of biotic endemism. Among its vertebrate fauna, reptiles have broad distributions, thus, they constitute a compelling system for assessing the impact of ecological variation and geographic isolation on species diversification. The red-headed rock agama, Agama agama, lives in a wide range of habitats and, thus, it may show genetic structuring and diversification. Herein, we tested the hypothesis that ecology affects its genetic structure and population divergence. Bayesian inference phylogenetic analysis of a mitochondrial DNA (mtDNA) gene recovered four well-supported matrilines with strong evidence of genetic structuring consistent with eco-geographic regions. Genetic differences among populations based on the mtDNA also correlated with geographic distance. The ecological niche model for the matrilines had a good fit and robust performance. Population divergence along the environmental axes was associated with climatic conditions, and temperature ranked highest among all environmental variables for forest specialists, while precipitation ranked highest for the forest/derived savanna, and savanna specialists. Our results cannot reject the hypothesis that niche conservatism promotes geographic isolation of the western populations of Nigerian A. agama. Thus, ecological gradients and geographic isolation impact the genetic structure and population divergence of the lizards. This species might be facing threats due to recent habitat fragmentation, especially in western Nigeria. Conservation actions appear necessary.

17.
ACS Appl Mater Interfaces ; 11(28): 25483-25494, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31268651

RESUMO

This study reports a new class of photocatalytic hybrid clay nanocomposites prepared from low-cost sources (kaolinite clay and Carica papaya seeds) doped with Zn and Cu salts via a solvothermal process. X-ray diffraction analysis suggests that Cu-doping and Cu/Zn-doping introduce new phases into the crystalline structure of Kaolinite clay, which is linked to the reduced band gap of kaolinite from typically between 4.9 and 8.2 eV to 2.69 eV for Cu-doped and 1.5 eV for Cu/Zn hybrid clay nanocomposites (Nisar, J.; Århammar, C.; Jämstorp, E.; Ahuja, R. Phys. Rev. B 2011, 84, 075120). In the presence of solar light irradiation, Cu- and Cu/Zn-doped nanocomposites facilitate the electron-hole pair separation. This promotes the generation of singlet oxygen which in turn improves the water disinfection efficiencies of these novel nanocomposite materials. The nanocomposite materials were further characterized using high-resolution scanning electron microscopy, fluorimetry, thermogravimetric analysis, and Raman spectroscopy. The breakthrough times of the nanocomposites for a fixed bed mode of disinfection of water contaminated with 2.32 × 107 cfu/mL E. coli ATCC 25922 under solar light irradiation are 25 h for Zn-doped, 30 h for Cu-doped, and 35 h for Cu/Zn-doped nanocomposites. In the presence of multidrug and multimetal resistant strains of E. coli, the breakthrough time decreases significantly. Zn-only doped nanocomposites are not photocatalytically active. In the absence of light, the nanocomposites are still effective in decontaminating water, although less efficient than under solar light irradiation. Electrostatic interaction, metal toxicity, and release of singlet oxygen (only in the Cu-doped and Cu/Zn-doped nanocomposites) are the three disinfection mechanisms by which these nanocomposites disinfect water. A regrowth study indicates the absence of any living E. coli cells in treated water even after 4 days. These data and the long hydraulic times (under gravity) exhibited by these nanocomposites during photodisinfection of water indicate an unusually high potential of these nanocomposites as efficient, affordable, and sustainable point-of-use systems for the disinfection of water in developing countries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...